PERIODIC AND QUASIPERIODIC MOTION 2)
← Back
"The combination of two independent periodic motions produces a toric attractor. A quasiperiodic orbit winds itself round the torus like cotton on a bobbin" (I. STEWART, 1989, p.45).
More than two independent periodic motions generally produce, when combined, a chaotic behavior. In J.P. ECKMANN's words, in such case the system may explore "in several occasions the same instability without periodicity" (1992, p.113)… Or possibly, periodicity is so complex and at such a long time scale that it becomes practically unobservable.
P. BERGÉ and M. DUBOIS describe the "three principal ways that may lead to chaos starting from a periodic regime:
"1. by period doubling, for which period is doubled at each bifurcation until nearing a period of infinite length;
"2. By intermittences, for which periodic states slowly destabilize until there is a "puff" of turbulence;
"3. by quasi-periodicity, for which the nonlinear interaction of 2 (or 3) oscillators leads to chaotic behavior" (1992, p.128).
Categories
- 1) General information
- 2) Methodology or model
- 3) Epistemology, ontology and semantics
- 4) Human sciences
- 5) Discipline oriented
Publisher
Bertalanffy Center for the Study of Systems Science(2020).
To cite this page, please use the following information:
Bertalanffy Center for the Study of Systems Science (2020). Title of the entry. In Charles François (Ed.), International Encyclopedia of Systems and Cybernetics (2). Retrieved from www.systemspedia.org/[full/url]
We thank the following partners for making the open access of this volume possible: