BCSSS

International Encyclopedia of Systems and Cybernetics

2nd Edition, as published by Charles François 2004 Presented by the Bertalanffy Center for the Study of Systems Science Vienna for public access.

About

The International Encyclopedia of Systems and Cybernetics was first edited and published by the system scientist Charles François in 1997. The online version that is provided here was based on the 2nd edition in 2004. It was uploaded and gifted to the center by ASC president Michael Lissack in 2019; the BCSSS purchased the rights for the re-publication of this volume in 200?. In 2018, the original editor expressed his wish to pass on the stewardship over the maintenance and further development of the encyclopedia to the Bertalanffy Center. In the future, the BCSSS seeks to further develop the encyclopedia by open collaboration within the systems sciences. Until the center has found and been able to implement an adequate technical solution for this, the static website is made accessible for the benefit of public scholarship and education.

A B C D E F G H I J K L M N O P Q R S T U V W Y Z

EMERGENT PROPERTIES 2)

1. "Properties of a structural level in a hierarchy that cannot be predicted from the properties of the components of the antecedent level (R.F. FOX, 1988, p.171).

2. "a) Properties which emerge as a coarser-grained level of resolution is used by the observer.

b) Properties which are unexpected by the observer because of his incomplete data set, with regard to the phenomenon at hand.

c) Properties which are, in and of themselves, not derivable a priori from the behavior of the parts" (T.F.H. ALLEN & T.B. STARR, 1982, p.267).

A good example of emergent property can be found in a system's autonomy. N. PEGUIRON describes the following very simple situation: "Let us consider an elemental electrical circuit made up from a relay and two switches: the first normally open serves to start the current within the coil of the relay, but it can be seen that this action is conserved when one stops to press the switch; the second one, normally shut, has the opposite effect, but the same property. This very simple circuit presents the property to memorize the last performed commands however this memorization property does not belong to any of the elements. As long as the coils, the contacts and the switches are separately studied, it is not possible to understand, nor to predict the global property of memorization. This property is said to be emergent because it is found neither in the components of the system, nor in their assembled state" (1989, p.9).

It appears only when the system is connected functionally with its environment, the grid.

Numerous other examples of emergent properties can be given, as for example:

- life, in relation to macromolecules

- consciousness as a result of numerous interconnexions between neurons

- a working car, as a meaningful and functional assembly of parts.

Water as a liquid, while its parts, hydrogen and oxygen are both gases in their elemental state

Categories

  • 1) General information
  • 2) Methodology or model
  • 3) Epistemology, ontology and semantics
  • 4) Human sciences
  • 5) Discipline oriented

Publisher

Bertalanffy Center for the Study of Systems Science(2020).

To cite this page, please use the following information:

Bertalanffy Center for the Study of Systems Science (2020). Title of the entry. In Charles François (Ed.), International Encyclopedia of Systems and Cybernetics (2). Retrieved from www.systemspedia.org/[full/url]


We thank the following partners for making the open access of this volume possible: